Archives par étiquette : 5V

Comment alimenter votre Raspberry Pi avec une batterie (MàJ)

En parcourant le web au sujet du Raspberry Pi et en observant les statistiques de fréquentation de ce blog www.magdiblog.fr, je me rends compte que le sujet le plus recherché porte sur le fonctionnement du Pi sur batterie.

imageEn effet, et c’est également mon avis, ces mini-ordinateurs ne sont pas faits pour rester sur un bureau. La question de l’alimention du Pi pour qu’il puisse fonctionner en parfaite autonomie revient donc souvent.

Je vous propose ici de faire un tour d’horizon des informations et tests que j’ai pu rassembler et effectuer au cours de mes diverses expérimentations, dans le but, je l’espère, de vous permettre de mener à bien vos projets 🙂

Les besoins du Raspberry Pi

Comme précisé par la FAQ du site raspberrypi.org, le Pi a besoin d’une alimentation en courant continue de 5V la plus propre possible. En effet, le Pi n’est pas protégé contre les piques et les chutes de tension qui pourraient lui causer des dommages, c’est pourquoi il faut veiller à la qualité de l’alimentation que vous utilisez.

En pratique, votre Pi « fonctionnera » avec une alimentation comprise entre 4,5V et 5,7V. J’ai notamment pu constater que la plupart des transfos ou « chargeurs » vendus dans le commerce affichant une tension de sortie de 5V, fournissent souvent un peu plus, environ 5,5V. Rien de très grave pour votre Pi 🙂

La tenstion du courant d’alimentation est une chose, mais le plus important est l’intensité (en ampère) du courant nécessaire au fonctionnement du Pi.

chargeur_5V2APour le modèle B, le site raspberrypi.org préconise une alimentation d’au moins 700mA (contre 300~400mA pour le modèle A). Pour les débutants, il faut voir cela comme la « quantité » de courant que doit fournir l’alimentation pour répondre aux besoins du Pi. Ce qui veut dire qu’il vous faudra une alimentation capable de fournir au moins 700mA pour que votre Pi (modèle B) puisse fonctionner correctement. Une alimentation de 900mA conviendra tout à fait, et disposera de 200mA de marge à distribuer à d’éventuels périphériques USB par exemple.


A savoir que ce « besoin » en courant de 700mA varie en fonction de l’utilisation du Pi, et des périphériques qui y sont connectés. Par exemple, sous Raspbian, quand le Pi modèle B ne fait rien (en idle donc), sa consommation est de l’ordre de 400~450 mA. Si on demande au processeur de travailler, il va consommer plus, avec des piques jusqu’à 600~650mA. Si on ajoute une webcam USB par exemple, on peut facilemement dépasser les 900mA. C’est d’ailleurs pour cette raison qu’il est souvent conseillé d’utiliser un hub USB disposant de sa propre alimentation afin de fournir suffisamment de courant à l’ensemble des périphériques connectés.

chargue_voiture_5VDans la pratique, j’ai constaté qu’une alimentation délivrant 1A (soit 1000mA) permet de couvrir tous les besoins, y compris avec deux périphériques USB énergivores tels qu’une webcam et une clé 3G par exemple.

Note : Certains chargeurs USB n’affichent pas directement l’intensité du courant qu’ils peuvent fournir. A la place, ils affichent la puissance max, en Watt qu’ils peuvent délivrer. La puissance (en W) est le produit de la tension (en V) et de l’intensité (en A) : P = U x I. Un transformateur 5V affichant une puissance de 12W, pourra donc fournir un courrant de 12/5 = 2,4 A.

Deux façons de brancher l’alimentation sur votre Pi

Vous pouvez, en effet, brancher l’alimentation de votre Pi de deux manières. Soit en utilisant la prise micro-USB spécialement prévue à cet effet, soit directement sur le port GPIO en branchant le + sur la pin 2 et le – sur la pin 6.

pi_microusb pi_gpio_alim

 L’alimentation sur batterie

Comme nous l’avons vu précédemment, il faut utiliser une batterie qui fournisse une tension de 5V, et qui soit capable de délivrer au moins 700mA.

Plusieurs possibilités s’offrent à nous. Ci-dessous en détails, les principales alternatives des bonnes vieilles piles AA aux batteries au plomb en passant par les batteries au Lithium.

Les piles AA

Vous pouvez utiliser de simples piles AA de 1,5V. Il vous en faudra 4, que vous pouvez placer dans un support à pile comme ce boîtier coupleur 4 piles R6 AA
.

support_4AApileLes boîtiers équipés d’un interrupteur permettent d’allumer et d’éteindre le Pi facilement. En outre, l’utilisation de piles/accus rechargeables permet de rentabiliser l’achat d’un petit chargeur de piles. Pour mes tests j’utilise 4 accumulateurs (rechargeables) Energizer d’une capacité de 2300mAh fournissant une tension de 1,2V. La tension totale est donc de 4×1,2V soit 4,8V.

L’inconvénient avec ces piles ou accumulateurs, c’est que la tension chute rapidement en dessous de 4,5V, ce qui devient insuffisant pour faire fonctionner le Pi. Selon l’usage que vous en faites, et les périphériques USB que vous utilisez, vous pouvez tenir entre 2 et 3 heures avec 4 piles/accumulateurs de ce type. Comptez tout de même autour de 20€ pour les 4 piles/accumulateurs et environ 25€ pour un chargeur. Soit prêt de 50€ pour 2 à 3 heures d’autonomie en comptant le boitier coupleur. C’est de loin la solution la plus onéreuse !

Les batteries Lithium-ion ou Lithium-polymère


Il s’agit des batteries vendues comme batteries de secours pour smartphones, tablettes et autres appareils mobiles. L’utilisation du 5V étant un standard pour tous ces périphériques, la plupart de ces batteries conviendront pour votre Pi.

Il faut cependant faire attention à l’intensité maximum que la batterie pourra fournir ; pour la plupart, elles sont capables de délivrer 1A. Le gros avantage de ce type de batterie est que vous pouvez les charger grâce à un câble USB (souvent fournis), ce qui vous évitera d’acheter un chargeur séparément. Autre point fort de ces batteries, elles disposent de prises USB standards, qui permettront l’utilisation d’un câble micro-USB pour les brancher sur le Pi. De quoi faire un montage propre 🙂 Sachez toutefois que ces batteries sont très sensibles aux variations de température. Trop chaud ou trop froid, leur capacité chutera drastiquement. Leur usage en extérieur est donc délicat…

Enfin, ces batteries sont très abordables. On peut trouver des modèles d’une capacité de 5,2 Ah (de quoi tenir environ 6 heures selon l’utilisation) pour moins de 15€ (frais de port compris), comme cette Romoss 5200mAh sur Amazon
. J’ai utilisé cette batterie pour le prototypage du projet Pi CarJukeBox que vous pouvez consultez ici : Proptotype jukebox embarqué

Pour le projet Pi TimeLapse, qui nécessite beaucoup plus d’autonomie, j’ai opté pour le modèle TeckNet PowerBank 9000mAh, qui offre plus de 12 heures de fonctionnement à votre Pi !

IMG_4503

Vous trouverez plus de détails sur l’utilisation de cette batterie en lisant cet article : Pi TimeLapse – L’alimentation – 1/2

De plus en plus de modèles sont disponibles, de qualité, capacité et prix très variables. Veillez donc à choisir une batterie dont le rapport capacité/prix est le plus intéressant, tout en prêtant attention à la réputation de la marque et aux avis des autres utilisateurs.

Un mot sur la capacité des batteries : La capacité d’une batterie s’exprime en Ah (ampères heure). Une batterie ayant une capacité de 5Ah pourra, en théorie, fournir 5A pendant 1 heure. Ceci n’est pas à prendre au pied de la lettre. En effet, si la batterie en question ne peut fournir qu’un courant d’ 1A maximum, alors on doit interpréter les 5Ah comme étant la capacité à fournir 1A pendant 5 heures. Il ne s’agit là que d’une approximation grossière,  mais qui sert de base de calcul. Dans la pratique, soyez pessimiste quand à la capacité réelle de votre batterie, et prévoyez plus gros que prévu si vous le pouvez. Comme expliqué par Nico en commentaire de cet article, une batterie affichant 5Ah ne fournira que 4Ah en réalité. S’agissant en général de batteries 3,7V couplées à un élévateur de tension pour atteindre 5V, on observe en effet un écart de 20% à 40% entre la valeur théorique et la valeur utile, selon la qualité et le rendement des composants de la batterie.

On trouve depuis peu de très petites batteries Lithium-polymère à des prix presque abordables. Le gros avantage de ce type de batterie est leur poids. C’est un excellent choix pour ceux qui souhaitent réaliser un drone, ou un dispositif très compact. Evidemment, cela se fait au détriment de la capacité et du prix… Même si les batteries Li-po se démocratisent, comptez tout de même 4 fois le prix d’une Li-ion à capacité égale…

Les batteries au plomb

batterie_plombLes batteries au plomb sont lourdes, très lourdes ! Mais, elles ne sont pas chères, elles se rechargent très facilement (pas besoin d’électronique complexe pour gérer la charge), et vous pouvez en trouver de toutes les capacités ; de quelques centaines de mAh à plus de 150 Ah pour les batteries de camion ! Et surtout, c’est presque increuvable, elles résistent au froid, au chaud, et durent des années sans trop perdre de leur capacité. Si le poids et l’encombrement ne sont pas un problème pour vous, une batterie au plomb peut être un excellent choix !


Pour le projet Pi TimeLapse, j’ai utilisé une batterie plomb rechargeable de 12V avec une capacité de 12 Ah. Je n’ai pas trouvé de batteries plomb en 5V, mais uniquement en 24V, 12V ou 6V. L’utilisation d’un petit convertisseur de tension tel que le KEMO M015N, permet de palier ce problème. Dans ce cas, prenez en compte la consommation du convertisseur de tension ainsi que les pertes occasionnées par la chute de tension.

Ce type de batterie peut notamment être utilisée sur les installations à panneaux solaires, ce qui est très pratique pour les stations météos, systèmes embarqués sur bateaux, en camping, etc…

Note sur les convertisseurs de tension : Pour passer d’une tension de 12V à 5V par exemple, vous devez utiliser un convertisseur ou régulateur de tension. Le KEMO M015N permet d’ajuster la tension de sortie, c’est pratique pour les tests, mais ce n’est pas très précis, sensible à la chaleur, et c’est relativement cher. Si vous connaissez précisemment la tension d’entrée et la tension de sortie dont vous avez besoin, préférez ce type de circuit S7V7F5, ou ce type de module U/SBEC utilisé en modélisme.

Pour les très longues durées

S’il s’agit de faire fonctionner votre Pi pendant quelques heures, une batterie Li-ion entre 5Ah et 9Ah sera parfaite. En revanche, si vous avez besoin que votre système soit fonctionnel plusieurs jours, semaines ou mois, cela devient vite problématique. Vous pouvez tout à fait acheter 200 batteries Li-ion de 10Ah, si vous parvenez à convaincre votre banquier et que vous disposez de plusieurs m3 pour les stocker… Dans le cas contraire il va falloir ruser 😉

Oubliez les panneaux solaires…

panneauJe suis tout à fait conscient que je risque d’en froisser certains, mais sous nos latitudes les panneaux solaires « portatifs » ne vous permettront pas de faire tourner votre Pi toute l’année…

Prennons un exemple : En moyenne, les chargeurs solaires portatifs permettent un courant de charge de 250mA, 500mA, voire 1,4A (7W) pour les plus onéreux. Ces valeurs sont bien sûr théoriques, et pour une exposition au soleil idéale… Je n’ai pas pu tester moi même ce type de chargeur solaire, mais d’après les infos que l’on peut trouver sur le web, il est très rare de dépasser les 200mA de charge,… Nous sommes loins des 700mA requis pour faire fonctionner le Pi.

Certains chargeurs solaires ont des batteries Li-ion ou Li-po intégrées de capacités variables. Dans ce cas, le Pi pourra fonctionner sur la batterie qui est elle même rechargée par le panneau solaire. Cependant,  le Pi vide la batterie beaucoup plus vite qu’elle ne se recharge. Pire, dans certains cas, il n’est pas possible d’utiliser la batterie en même temps qu’elle se charge…

Bref,… Je suis convaincu que d’ici quelques années nous pourrons exploiter l’énergie solaire de manière plus efficace et que les batteries se chargeront plus vite, mais pour le moment, cette technologie ne permet pas de faire fonctionner un Pi sur la durée.

Note : Bien évidemment, si vous avez plusieurs m² de panneaux solaires sur le toît de votre maison, vous pourrez certainement produire suffisamment d’électricité pour recharger des batteries qui alimenteront le Pi pendant la nuit,… Disons que cela fonctionnera au moins l’été…

Régulez plutôt l’alimentation de votre système !

La question que  vous devez vous poser est : « Est-ce que mon système doit fonctionner sans interruption 24h/24 7j/7 ? ». Si la réponse est NON, alors vous pouvez considérablement augmenter l’autonomie de votre système en régulant son alimentation !

Si vous avez construit une station météo, alors vous pouvez récolter les données météorologiques entre 1 et 6 fois par heure ou par jour. Si vous voulez surveillez votre maison de campagne pendant 10 mois dans l’année, vous pouvez vous contenter d’une photo par jour ou même par semaine. Si votre projet est un système automatique pour gérer l’ouverture de votre velux en cas de forte chaleur, vous pouvez vous contenter d’allumer le Pi qu’au délà d’une certaine température…

En réfléchissant bien, il est rare de devoir faire fronctionner votre système non-stop.

Voici un exemple de montage qui vous permettra de faire fonctionner votre Pi à intervalles réguliers pendant la durée de votre choix. Il s’agit en fait du même type de montage que pour l’Alimentation du Pi dans la voiture 2/3 mais dans une configuration différente.

Le matériel nécessaire

Le  montage

UntitledIl vous suffit de régler la minuterie programmable Velleman VM188 selon vos besoins 🙂

A savoir : Sous Raspbian, le Pi a besoin d’environ 40 secondes pour booter, et 20 secondes pour s’éteindre correctement (halt). Il faut donc compter 1 minute en plus du temps nécessaire à votre opération. Dans la pratique, 2 minutes de fonctionnement sont un minimum.

En respectant cela, vous pourrez par exemple prendre une photo de votre maison de vacances tous les jours pendant environ 10 mois 🙂 L’ajout d’un petit panneau solaire portatif devient ici pertinent, et permettra d’étendre énormément l’autonomie de votre système, puisque ce dernier ne consommera de la batterie que 2 minutes par jours 🙂

Sélection de batteries et chargeurs pour alimenter votre Pi

On en parle sur ces forums

Solutions alternatives pour alimenter votre Pi

10 – Un boitier en Légos

J’aime beaucoup les Légos, les possibilités sont sans limites, et c’est très pratique pour réaliser de petits boitiers fonctionnels et sur mesures 🙂 En attendant que les imprimantes 3D deviennent abordables, je n’ai pas trouvé mieux 🙂

image

Comme vous pouvez le constater sur la photo ci-dessus, la carte du Pi correspond, à 1 mm près, à 7 x 11 plots de Légo. Ce qui fait que la carte tient parfaitement en place, avec très peu de jeu. Le circuit Velleman VM188 occupe lui 6 x 10 plots. L’ensemble tient tout juste sur une hauteur de 3 rangées de Légo. On pourrait penser que ça a été fait pour 😉

Il ne reste qu’à placer le couvercle, et à positionner le régulateur de tension 🙂

imageIMPORTANT : Lorsque l’on abaisse une tension comme ici, en passant de 12V à 5V, il y a une partie de l’énergie qui est « absorbée » par le circuit. Pour connaître la puissance absorbée ou « dissipée » en Watt par le circuit, il faut faire la différence entre la puissance du courant de sortie et celle du courant d’entrée P diss = P out – P in. On obtient la puissance en faisant le produit de la tension et de l’intensité du courant P = U x I. Si on considère que le Pi tire environ 700 mA, soit 0,7 A, on obtient P diss = 12 x 0,7 – 5 x 0.7 = 4,9 W. Sur ces 4,9 W de puissance dissipée, une partie sera convertie en chaleur, c’est l’effet Joule. Ce qui veut dire que le module va chauffer ! C’est pour cela que le régulateur de tension  KEMO M015N est équipé d’une patte en métal qui sert de radiateur, et  qui peut être vissé à un radiateur plus grand en cas de besoin. Sur la datasheet du régulateur de tension  KEMO M015N il est précisé qu’au-delà de 3W dissipé, il est conseillé de laisser respirer le module et de ne pas l’enfermer. Au-delà de 6W, il est vivement recommandé d’utiliser un radiateur pour refroidire le module.

Comme le régulateur de tension  KEMO M015N risque de chauffer, je vais le positionner au dessus du boitier, en laissant bien respirer la patte en métal. Voici le résultat final :

image

Tout à fait à gauche, le domino qui fera le lien avec le faisceau électrique de l’allume-cigare. A droite, la carte son prête à être connectée à l’autoradio 🙂

Baptisé Carpo (en référence à une lune de Jupiter), le module est presque complet. Il me reste le circuit capacitif pour l’extinction du dispositif à ajouter 🙂

8 – Alimentation du Pi dans la voiture 2/3 – Allumage

Au démarrage de la voiture

Le problème

Si nous branchons simplement le Pi sur un abaisseur de tension, que se passe-t-il lorsque nous entrons dans notre voiture et démarrons le moteur :

  1. On entre la clé, et on met le contact (petit pique de tension)
  2. A ce moment là, du courrant est disponible sur le circuit électrique et le Pi boot
  3. On tourne la clé à fond pour démarrer le moteur (grosse chute de tension + parasites)
  4. Là, l’appel de courant du démarreur est tel que plus rien n’est disponible pour le Pi, qui s’éteint, privé de courant
  5. Le moteur tourne (tension relativement stable selon usage des équipements de la voiture)
  6. Du courant est à nouveau disponible, et le Pi boot à nouveau

Pour faire simple, notre pauvre Pi s’en prend plein les carreaux… Subissant piques et chutes de tension, parasites, multiple boots et extinctions sauvages… On peut s’attendre à réduire considérablement la durée de vie du Pi, voir à sérieusement l’endommager dès les premières utilisations.

La solution

La première chose à faire est de choisir un régulateur de tension continue stabilisé et anti-parasite. Ceci permettra d’absorber les variations importantes du courant pour fourrnir une tension propre et stable au Pi.

imageLe régulateur de tension  KEMO M015N disponible chez Conrad notamment, répond à ces exigeances. Il permet de choisir la tension de sortie voulue (5V pour  le Pi), et accepte une tension d’entrée entre 6V et 28V (parfait pour les 12V fournis par la prise allume cigare).

Ensuite, il faut empêcher le Pi de booter lorsque l’on met le contact avant de démarrer le moteur, et le démarrer seulement une fois que le moteur tourne. Pour cela, il convient d’ajouter un petit circuit de tempo équipé d’un relais, qui n’autorisera l’arrivée du courrant au Pi qu’au bout de quelques secondes.

ar-module-vm188-377C’est alors que j’ai repensé au circuit de tempo Velleman VM188 que j’aurais pu utiliser pour mon projet Pi TimeLapse. En effet, ce petit circuit alimenté en 12V (comme c’est pratique 😉 ), peut être utilisé de plusieur façons, et notamment, déclancher le relais après un nombre de secondes déterminé. En déclenchant le relais au bout de 10 secondes, le Pi ne sera pas alimenter entre le moment où vous mettez le contact et le moment où vous démarrez le moteur.

Un mot sur le circuit de tempo Velleman VM188 : Quelque soit votre projet, si vous avez besoin d’une minuterie à sortie sur relais, c’est LE kit qu’il vous faut ! Vous pouvez le trouver entre 15€ et 20€ (pas donné mais très fonctionnel…), et faire fonctionner sur des temps allant de 1 seconde à 60 heures selon 4 modes :

  • démarrage avec impulsion (démarre allumé)
  • démarrage avec pause (démarre éteint)
  • activation et désactivation unique (s’allume ou s’éteint après un certain temps)
  • fonctionnement cyclique (s’allume puis s’éteint en boucle, on peut choisir la durée d’allumage et la durée de coupure pour chaque cycle)

Le relais équipé est prévu pour des courants de 230V sur 16A, vous avez donc de quoi programmer l’alimentation tout ce que vous souhaitez dans votre maison, voiture, panneaux solaires,…

Voici le schéma complet du montage :

UntitledAvec ce montage, j’assure à mon Pi une alimentation propre, sans danger pour ma voiture 🙂

Reste à gérer la coupure brutale de courant lorsqu’on éteint le moteur…

 

7 – Alimentation du Pi dans la voiture 1/3

Comme pour le projet Pi TimeLapse l’alimentation du Raspberry Pi est le point le  plus problématique. Décidemment, il n’existe pas de solutions simples et universelles…

463372_10151013958851148_2123947142_o_art-8-19403

Présentation du contexte

Je souhaite brancher mon Pi JukeBox sur le circuit électrique de ma voiture. De nos jours, les prises allume-cigares présentes dans les voitures sont prévues pour fournir du courant ; d’ailleurs, même s’il s’agit toujours d’une prise dite « allume-cigare », cela fait déjà quelques années qu’on ne trouve plus la résistance permettant d’allumer une cigarette… A la place, un jolis capuchon en plastique avec la mention « 12V« , preuve qu’il s’agit maintenant plus d’un circuit d’alimentation qu’autre chose. D’ailleurs, les fusibles ont été adaptés et il y a un système d’économie d’énergie qui met « en veille » la voiture au bout d’un certain temps lorsque du courant est tiré sur la batterie moteur éteint. Les derniers modèles de voiture ne s’embarassent même plus de se type de prise, et proposent directement une prise USB… Comme ça c’est clair 🙂

Branchement sur le faisceau électrique 12V

Il convient de faire un montage discret, sans monopoliser la prise allume-cigare qui pourra servir pour autre chose.

Dans ma voiture, il m’a suffit de démonter la console centrale pour accéder au faisceau électrique de la prise allume-cigare. Grâce à un domino, je fais une dérivation (un branchement en parallèle) et fais passer le câble derrière l’autoradio jusque dans la boîte à gants où sera logé l’ensemble du dispositif. Une fois la console centrale remise en place, on ne voit rien du tout 🙂

image

Nous avons donc une source d’alimentation continue 12V à porté de main. Il suffit donc d’un simple abaisseur de tenstion 12V -> 5V pour alimenter le Pi 🙂

Sauf que… c’est loin d’être aussi simple si on veut faire les choses proprement ! En effet, l’allumage de la voiture et son arrêt peuvent poser problème…

 

3 – L’alimentation – 1/2

L’alimentation du système est de loin le point le plus problématique. L’objectif est de tenir au moins une semaine sans avoir à recharger les batteries.

Estimation de la consomation

De base, le Raspberry Pi consomme environ 700 mA sur 5V. Avec la webcam et le dongle 3G, on peut prévoir une consomation instantanée totale d’environ 1 A. La batterie que j’ai choisi a une capacité de 9000 mAh, ce qui veut dire qu’en tirant 1 A, la batterie pourra tenir environ 9 heures (C’est un calcul fait à la louche, pour se faire une idée. En réalité, ce n’est pas tout à fait aussi immédiat).

La batterie TeckNet iEP387-II 7000mAh est une batterie Lithium-ion. Le problème avec ce genre de batterie c’est qu’elles sont sensibles aux variations de températures, en dessous de 10°C et au dessus de 40°C, on peut s’attendre à des problèmes. Le chantier se déroulant entre le mois de mai et le mois de septembre, on peut cependant espérer rester dans cette fourchette de température.

Pour résumer, la batterie que j’ai choisie ne peut alimenter le dispositif que pendant une dizaine d’heures maximum. Ce qui est loin d’être suffisant…

Panneaux solaires

Depuis quelques années, on peut trouver des panneaux solaires nomades pour recharger téléphones mobiles et autres tablettes ou GPS. Ils sont généralement équipé d’une petite batterie au Lithium-Ion de faible capacité (5Ah max).

Ce type de panneau solaire peut être intéressant dans des zones très ensoleillées (genre désert du Sahara). Dans le nord de la France où nous n’avons pas vu le soleil depuis 1429 d’après Wikipédia 😉 il ne faut pas compter dessus.

A noter également qu’il faut compter environ 100€ pour un modèle fiable doté d’une batterie suffisante. Sans compter qu’on peut dire à Dieu à la discrétion avec un panneau solaire au fond du jardin ^^.

Fonctionnement non continue

Il n’est donc pas envisageable d’utiliser des panneaux solaires. Il n’est pas non plus envisageable, économiquement parlant, d’acheter plusieurs batteries. En effet, pour tenir 7 jours, il faudrait pas moins de 17 batteries de 9000 mAh, ce qui représente plus de 660 € (Sans compter l’encombrement, et le poids).

La solution qui apparait naturellement est de ne faire fonctionner le système que lorsqu’on a besoin de prendre une photo. J’ai déterminé qu’il faut environ 80 secondes au Raspberry Pi, pour booter, prendre une photo, et s’éteindre correctement. J’ai besoin de prendre une photo toutes les 10 minutes, de 8h00 à 18h00, du lundi au vendredi. Ce qui veut dire, que j’ai besoin d’alimenter le système pendant 2 minutes (prenons large), toutes les 10 minutes. Au finale, sur la semaine, j’ai donc besoin de tenir :

2 (minutes) * 6 (par heure) * 10 (heures par jour) * 5 (jours) = 600 minutes = 10 heures

J’ai donc besoin de tenir 10 heures. Compte tenu que le Raspebrry Pi ne consommera pas 1 A pendant les 2 minutes où il est alimenter, on peut espérer que ma batterie de 9000 mAh suffise 🙂

J’ai réalisé plusieurs test en faisant tourner le Pi + Webam avec prise de photos toutes les 10 minutes. La batterie a tenue 14h 🙂 Ce qui est une excellente nouvelle ! Avec le dongle 3G qui envoi des infos toutes les 30 minutes, on tombe à un peu plus de 11h d’autonomie, ce qui correspond parfaitement au besoin, avec une petite marge de sécurité en plus 🙂

Programmateur ?

L’idée m’a été soumise par mon cher papa, expert en électronique en son temps 😉 J’en profite pour lui faire un peu de pub, car il vient de lancer sa société spécialisé dans la domotique et l’aménagement de l’habitat : www.asa-habitat.fr 🙂

Il s’agit de construire un petit circuit de tempo, qui va simplement jouer le rôle d’intérupteur dans le circuit d’alimentation du Raspberry Pi :

Schéma circuit alimentation RPi

Ce circuit de temporisation fonctionne indépendamment du reste du système, il est composé :

  • d’un relais (qui joue le rôle de l’interrupteur)
  • d’un circuit électronique doté d’une horloge
  • d’une batterie 12V

Mes connaissances en électronique sont trop limités pour entrer plus dans le détail. Je confie donc cette tâche à mon cher P’pa. Dans l’idée, il s’agit d’un circuit de ce type là (mais en plus complexe) : Velleman VM188

A suivre…